Accepted Papers
December 15, 2023
Pre-registration form: https://forms.gle/YBCwn7L8N5AxExMG7
virtual NeurIPS portal: https://neurips.cc/virtual/2023/workshop/66502
Oral Presentations
Designing Long-term Group Fair Policies in Dynamical Systems
Miriam Rateike · Isabel Valera · Patrick Forré
Learning in reverse causal strategic environments with ramifications on two sided markets
Seamus Somerstep · Yuekai Sun · Ya'acov Ritov
Repairing Regressors for Fair Binary Classification at Any Decision Threshold
Kweku Kwegyir-Aggrey · Jessica Dai · A. Feder Cooper · John Dickerson · Suresh Venkatasubramanian · Keegan Hines
Backtracking Counterfactual Fairness
Lucius Bynum · Joshua Loftus · Julia Stoyanovich
Papers
Information-Theoretic Bounds on The Removal of Attribute-Specific Bias From Neural Networks
Jiazhi Li · Mahyar Khayatkhoei · Jiageng Zhu · Hanchen Xie · Mohamed Hussein · Wael Abd-Almageed
Is My Prediction Arbitrary? Confounding Effects of Variance in Fair Classification
A. Feder Cooper · Katherine Lee · Madiha Choksi · Solon Barocas · Christopher De Sa · James Grimmelmann · Jon Kleinberg · Siddhartha Sen · Baobao Zhang
Procedural Fairness Through Decoupling Objectionable Data Generating Components
Zeyu Tang · Jialu Wang · Yang Liu · Peter Spirtes · Kun Zhang
Exploring Predictive Arbitrariness as Unfairness via Predictive Multiplicity and Predictive Churn
Jamelle Watson-Daniels · Lance Strait · Mehadi Hassen · Amy Skerry-Ryan · Alexander D'Amour
Improving Fairness-Accuracy tradeoff with few Test Samples under Covariate Shift
Shreyas Havaldar · Jatin Chauhan · Karthikeyan Shanmugam · Jay Nandy · Aravindan Raghuveer
Loss Modeling for Multi-Annotator Datasets
Uthman Jinadu · Jesse Annan · Shanshan Wen · Yi Ding
Measuring fairness of synthetic oversampling on credit datasets
Decio Miranda Filho · Thalita Veronese · Marcos M. Raimundo
Transparency Through the Lens of Recourse and Manipulation
Yatong Chen · Andrew Estornell · Yevgeniy Vorobeychik · Yang Liu
Variation of Gender Biases in Visual Recognition Models Before and After Finetuning
Jaspreet Ranjit · Tianlu Wang · Baishakhi Ray · Vicente Ordonez
On Comparing Fair classifiers under Data Bias
mohit sharma · Amit Deshpande · Rajiv Ratn Shah
Reevaluating COMPAS: Base Rate Tracking and Racial Bias
Victor Crespo · Javier Rando · Benjamin Eva · Vijay Keswani · Walter Sinnott-Armstrong
Performativity and Prospective Fairness.
Sebastian Zezulka · Konstantin Genin
.
Explaining knock-on effects of bias mitigation
Svetoslav Nizhnichenkov · Rahul Nair · Elizabeth Daly · Brian Mac Namee
On Mitigating Unconscious Bias through Bandits with Evolving Biased Feedback
Matthew Faw · Constantine Caramanis · Sanjay Shakkottai · Jessica Hoffmann
Jan Simson · Florian Pfisterer · Christoph Kern
Fairer and More Accurate Models Through NAS
Richeek Das · Samuel Dooley
Fairness in link analysis ranking algorithms
Ana-Andreea Stoica · Augustin Chaintreau · Nelly Litvak
A Causal Perspective on Label Bias
Vishwali Mhasawade · Alexander D'Amour · Stephen Pfohl
Remembering to Be Fair: On Non-Markovian Fairness in Sequential Decision Making
Parand A. Alamdari · Toryn Klassen · Elliot Creager · Sheila McIlraith
FAIR-Ensemble: Homogeneous Deep Ensembling Naturally Attenuates Disparate Group Performances
Wei-Yin Ko · Daniel Dsouza · Karina Nguyen · Randall Balestriero · Sara Hooker
Fair Clustering: Critique and Future Directions
John Dickerson · Seyed Esmaeili · Jamie Morgenstern · Claire Jie Zhang
Seller-side Outcome Fairness in Online Marketplaces
Zikun Ye · Reza Yousefi Maragheh · Lalitesh Morishetti · Shanu Vashishtha · Jason Cho · Kaushiki Nag · Sushant Kumar · Kannan Achan
Mitigating stereotypical biases in text to image generative systems
Piero Esposito · Parmida Atighehchian · Anastasis Germanidis · Deepti Ghadiyaram
Dr. FERMI: A Stochastic Distributionally Robust Fair Empirical Risk Minimization Framework
Sina Baharlouei · Meisam Razaviyayn
Joshua Loftus · Lucius Bynum · Sakina Hansen
Extended Abstracts
It’s About Time: Fairness and Temporal Depth
Joshua Loftus
On The Vulnerability of Fairness Constrained Learning to Malicious Noise
Avrim Blum · Princewill Okoroafor · Aadirupa Saha · Kevin Stangl
Model Fairness is Constrained by Decision Making Strategy Design
Alexandra Stolyarova
Algorithmic Fairness Reproducibility: A Close Look at Data Usage over the Years
Jan Simson · Alessandro Fabris · Christoph Kern
Bayesian Multilevel Regression and Poststratification for Dynamic Diversity-Aware Modeling
Nicole Osayande · Danilo Bzdok
The Long-Term Effects of Personalization: Evidence from Youtube
Andreas Haupt · Mihaela Curmei · François-Marie de Jouvencel · Marc Faddoul · Benjamin Recht · Dylan Hadfield-Menell
Allocating Bonus Points in Sequential Matchings with Preference Dynamics
Meirav Segal · Liu Leqi · Anne-Marie George · Christos Dimitrakakis · Hoda Heidari
Equal Opportunity under Performative Effects
Sophia Gunluk · Dhanya Sridhar · Antonio Gois · Simon Lacoste-Julien
Assessing Perceived Fairness in Machine Learning (ML) Process: A Conceptual Framework
Anoop Mishra · Deepak Khazanchi
Unbiased Sequential Prediction for Fairness in Predictions-to-Decisions Pipelines
Georgy Noarov · Ramya Ramalingam · Aaron Roth · Stephan Xie
Deep Reinforcement Learning for Efficient and Fair Allocation of Healthcare Resources
Yikuan Li
What Comes After Auditing: Distinguishing Between Algorithmic Errors and Task Specification Issues
Charvi Rastogi
On Hedden's Proof that Machine Learning Fairness Metrics are Flawed
Anders Søgaard · Klemens Kappel · Thor Grünbaum
Achieving Counterfactual Fairness in Changing Environments via Sequential Autoencoder
Yujie Lin · Chen Zhao · Minglai Shao · Xujiang Zhao · Baoluo Meng · Haifeng Chen
Benjamin Laufer · Manish Raghavan · Solon Barocas
Improving Fairness in Facial Recognition Models with Distribution Shifts
Gianluca Barone · Aashrit Cunchala · Rudy Nunez · Nicole Yang
Beyond Expectations: Model-Driven Amplification of Dataset Biases in Data Feedback Loops
Rylan Schaeffer · Oluwasanmi Koyej
Song Wei · Xiangrui Kong · Sarah Huestis-Mitchell · Yao Xie · Shixiang Zhu · Alinson Xavier · Feng Qiu
Sundaraparipurnan Narayanan